S38 INCREMENTAL

1. S38 Incremental Optical Encoder (Blind shaft/through shaft)
1.1 Introduction:

S38 is a small economic universal design, compact, sturdy, high safety, and commonly used in industrial automations.
1.2 Feature:

- Encoder external diameter $\varnothing 38 \mathrm{~mm}$, thickness 28 mm ,
diameter of shaft up to $\varnothing 6 \mathrm{~mm}$;
- Ring locking structure;
- Adopt non-contact photoelectric principle;
- Reverse polarity protection;
- Short circuit protection;
- Multiple electrical interfaces available;
- Resolution per turn up to 32768PPR.
1.3 Application:

Textile, packaging, motor, elevator, CNC and other automation control fields.
1.4 Connection:

- Radial cable (standard length 1000 mm)
- Axial cable (standard length 1000 mm)
1.5 Protection:

IP50 \& IP65
1.6 Weight:
about 120 g
2. Model Selection Guide
2.1 Model composition(select parameters)

2. 2 Note
(1)(3)(b)7. Resolution selection is recommended below 5000PPR, Z signal is low level active.
(2)(4)(5). Resolution selection is recommended below 5000PPR, Z signal is high level active.
(9). Axial cable connection is not an option.
(10). $I P=50$; Cable length 1 m , if you need to change the length $C+$ number, max 100 m (indicated by C 100), please refer to page 2 for the specific length used for the output circuit.

S38 INCREMENTAL

Ver.3.0 Page $2 / 7$

3. Output mode

Electrical interface	Output circuit	Output wave form			
OC NPN open collector circuit					
OC PNP open collector circuit					
Push-pull					
Voltage					
TTL (DC5V) HTL (DC8-30V)					

4. Electrical Characteristics

			OC	Voltage	Push-pull	TTL	HTL
Supply voltage			$\mathrm{DC}+5 \mathrm{~V} \pm 5 \%$; DC8V-30V $\pm 5 \%$			DC $+5 \mathrm{~V} \pm 5 \%$	DC8-30V $\pm 5 \%$
Consumption current			100mA Max			120mA Max	
Allowable ripple			$\leq 3 \% \mathrm{rms}$				
Top response frequency			100 KHz			200 KHz	300 KHz
	Output	Input	$\leq 30 \mathrm{~mA}$	Load resistance$2.2 \mathrm{~K}$	$\leq 30 \mathrm{~mA}$	$\leq \pm 20 \mathrm{~mA}$	$\leq \pm 50 \mathrm{~mA}$
		Output	-		$\leq 10 \mathrm{~mA}$		
	Output voltage	"H"	-	-	$\begin{aligned} & \geq[\text { (Supply voltage) } \\ & -2.5 \mathrm{~V}] \end{aligned}$	$\geq 2.5 \mathrm{~V}$	$\geq \mathrm{Vcc}-3 \mathrm{Vdc}$
		"L"	$\leq 0.4 \mathrm{~V}$	$\begin{aligned} & \leq 0.7 \mathrm{~V}(\text { less than } \\ & 20 \mathrm{~mA}) \end{aligned}$	$\leq 0.4 \mathrm{~V}(30 \mathrm{~mA})$	$\leq 0.5 \mathrm{~V}$	$\leq 1 \mathrm{~V}$ Vdc
	Load voltage		SDC30V	-		-	
Rise \& Fall time			Less than 2us(cable length: 2 m)			$\leq 100 \mathrm{~ns}$ Less	(Cable length: 2 m)
Insulation strength			AC500V 60s				
Insulation resistance			$10 \mathrm{M} \Omega$				
Mark to space ratio			45\% to 55\%				
Reverse polarity protection			\checkmark				
Short-circuit protection			-		$\boldsymbol{\sim}$ (1)		
Phase shift between A \& B			$90^{\circ} \pm 10^{\circ}$ (frequency in low speed)				
			$90^{\circ} \pm 20^{\circ}$ (frequency in high speed)				
GND			Not connect to encoder				

(1) Short-circuit to another channel or GND permitted for max.30s.

5．Mechanical Characteristics

Diameter of shaft	$\varnothing 5 \mathrm{~mm} ; \varnothing 6 \mathrm{~mm}$（D型口，不锈钢材质）
Starting torque	Less than $4.4 \times 10^{-3} \mathrm{~N} \cdot \mathrm{~m}$
Inertia moment	Less than $1.5 \times 10^{-6} \mathrm{~kg} \cdot \mathrm{~m}^{2}$
Shaft load	Radial $30 \mathrm{~N} ;$ Axial 20 N
Slew speed	$\leq 6000 \mathrm{rpm}(I P 50) ; \leq 4000 \mathrm{rpm}(I P 65)$
Bearing Life	1.5×10^{9} revs at rated load（100000hrs at 2500 RPM$)$
Shell	Aluminium alloy
Weight	about 120 g

6．Environmental Specifications

Environmental temperature	Operating：$-20 \sim+90^{\circ} \mathrm{C}$（repeatable winding cable：$-10^{\circ} \mathrm{C}$ ）；Storage：$-25 \sim+95^{\circ} \mathrm{C}$
Environmental humidity	Operating and storage： $35 \sim 85 \% \mathrm{RH}$（noncondensing）
Vibration（Endurance）	Amplitude $0.75 \mathrm{~mm}, 5 \sim 55 \mathrm{~Hz}, 2 \mathrm{~h}$ for $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ direction individually
Shock（endure）	$490 \mathrm{~m} / \mathrm{s}^{2} \quad 11 \mathrm{~ms}$ three times for $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ direction individually
Protection	IP50 \＆IP65

S38 INCREMENTAL

7. Wiring table

7.1 OC/Voltage/Push-pull (Wiring table for cable connection)

	Supply voltage		Incremental signal		
Wire color	Red	Black	White	Green	Yellow
Function	Up	OV	A	B	Z

7.2 TTL/HTL (Wiring table for cable connection)

	Supply voltage		Incremental signal					
Wire color	Red	Black	White	White/BK	Green	Green/BK	Yellow	Yellow/BK
Function	Up	OV	A+	A-	B+	B-	Z+	Z-
Twisted-paired cable								

Up=Supply voltage.
Shield wire is not connected to the internal circuit of encoder.

Cable connection

8. Basic Dimensions

8.1 Dimensions

8.2 Assembling requirement

Notice : The radial runout of motor shaft should be less than 0.03 mm , and the angle shoud be less than 1.0°.

Unit: mm

R = Shaft rotation direction of the signal output
R. 1 = Radial cable(standard length 1000)
R. 2 = Axial cable (standard length 1000, no through shaft option)

S38 INCREMENTAL

9．Accessories（推荐选购）

[^0]
[^0]: About vibration
 Vibration act on encoder always cause wrong pulse，so we should pay attention to working place．More pulse per revolution，narrower groovy spacing of grating，more effect to encoder by vibration，when rev is low or stop，vibration act on shaft or main body would cause grating vibrating，so encoder might make wrong pulse．

